Resumen
Actualmente hay sectores relacionados con la agrobiotecnología que promueven a la edición génica como una técnica compatible y complementaria a la agroecología, y como estrategia para lograr la seguridad alimentaria, y de mitigación y adaptación al cambio climático. La edición génica es capaz de insertar, eliminar o modificar nucleótidos de ADN o ARN en regiones genéticas específicas, a la vez que presenta efectos no deseados. Los promotores de la edición génica argumentan que las mutaciones introducidas no suponen ningún riesgo para el ambiente y/o la salud humana, por lo que estos productos deberían estar exentos de regulación, evaluación de riesgos, trazabilidad y etiquetado, lo que restringiría la libertad de elección de agricultores y consumidores. Una coexistencia basada en relaciones asimétricas no parece posible, sino que debe abordarse desde los desafíos epistemológicos y estructurales, por lo que se sugiere un alejamiento de los principios y prácticas académicas positivistas y corporativas, incluyendo la interdisciplina tal como se practica hoy en día. Esto sólo podrá lograrse con una comprensión, subversión y transformación del orden ontológico dominante. Además de problematizar sobre la supuesta “compatibilidad epistémica y estructural” entre la agrobiotecnología y la agroecología esperamos que este trabajo pueda contribuir a elaborar un espacio donde surjan nuevas prácticas, tecnologías transdisciplinares, multiagentes, colaborativas y coevolutivas, que ayuden a resolver muchas de las cuestiones más básicas y acuciantes del momento, pero también a proyectar una ciencia basada en el bienestar, y a construir un mundo donde prosperen las buenas relaciones entre los seres humanos y sus entornos sociales, culturales y naturales.
Citas
Ahmar, S., Mahmood, T., Fiaz, S., Mora-Poblete, F., Shafique, M. S., Chattha, M. S., & Jung, K. H. (2021). Advantage of Nanotechnology-Based Genome Editing System and Its Application in Crop Improvement. Front Plant Sci, 12, 663849. doi:10.3389/fpls.2021.663849
Agapito-Tenfen, S. Z., Okoli, A. S., Bernstein, M. J., Wikmark, O. G., & Myhr, A. I. (2018). Revisiting Risk Governance of GM Plants: The Need to Consider New and Emerging Gene-Editing Techniques. Front Plant Sci, 9, 1874. doi:10.3389/fpls.2018.01874
Altieri, M.A. (1995). Agroecology: The science of sustainable agriculture, 2nd ed. London: Westview Press.
Altieri, M.A. (2011). The agroecological revolution in Latin America: rescuing nature, ensuring food sovereignty and empowering peasants. The Journal of Peasant Studies, 38(3), 587-612. doi:10.1080/03066150.2011.582947
Amendola, M., Brusson, M., & Miccio, A. (2022). CRISPRthripsis: The Risk of CRISPR/Cas9-induced Chromothripsis in Gene Therapy. Stem Cells Translational Medicine, 11(10), 1003-1009. doi:10.1093/stcltm/szac064
Aviva, S., Fabrizio, M., Or, G., Cathy, M.-B., Shdema, F.-H., Tal, D.-M., . . . Avraham, A. L. (2023). A CRISPR-induced DNA break can trigger crossover, chromosomal loss and chromothripsis-like rearrangements. bioRxiv. doi:10.1101/2023.05.22.541757
Araki, M., & Ishii, T. (2015). Towards social acceptance of plant breeding by genome editing. Trends Plant Sci, 20(3), 145-149. doi:10.1016/j.tplants.2015.01.010
Barnum, C. R., Endelman, B. J., & Shih, P. M. (2021). Utilizing Plant Synthetic Biology to Improve Human Health and Wellness. Front Plant Sci, 12, 691462. doi:10.3389/fpls.2021.691462
Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., . . . Horvath, P. (2007). CRISPR provides acquired resistance against viruses in prokaryotes. Science, 315(5819), 1709-1712. doi:10.1126/science.1138140
Bauer-Panskus, A., Miyazaki, J., Kawall, K., & Then, C. (2020). Risk assessment of genetically engineered plants that can persist and propagate in the environment. Environmental Sciences Europe, 32. doi:10.1186/s12302-020-00301-0
Benbrook, C. M. (2012). Impacts of genetically engineered crops on pesticide use in the U.S. -- the first sixteen years. Environ Sci Eur, 24(24). doi:10.1186/2190-4715-24-24
Botella, J. (2019). Now for the hard ones: is there a limit on CRISPR genome editing in crops? Journal of Experimental Botany, 70(3), 734-737. doi:10.1093/jxb/erz007
Ceballos G, Ehrlich PR, Raven PH. Vertebrates on the brink as indicators of biological annihilation and the sixth mass extinction. Proc Natl Acad Sci U S A. 2020 Jun 16;117(24):13596-13602. doi: 10.1073/pnas.1922686117. Epub 2020 Jun 1. PMID: 32482862; PMCID: PMC7306750
Chehelgerdi, M., Chehelgerdi, M., Khorramian-Ghahfarokhi, M., Shafieizadeh, M., Mahmoudi, E., Eskandari, F., Rashidi, M., Arshi, A., & Mokhtari-Farsani, A. (2024). Comprehensive review of CRISPR-based gene editing: mechanisms, challenges, and applications in cancer therapy. Molecular cancer, 23(1), 9. https://doi.org/10.1186/s12943-023-01925-5
Clapp, J., & Ruder, S.-L. (2020). Precision Technologies for Agriculture: Digital Farming, Gene-Edited Crops, and the Politics of Sustainability. Global Environmental Politics, 20(3), 49-69. doi:10.1162/glep_a_00566
Clément, C., & Ajena, F. (2021). Paths of least resilience: advancing a methodology to assess the sustainability of food system innovations - the case of CRISPR Agroecology and Sustainable Food Systems, 45(5), 637-653. doi:10.1080/21683565.2021.1890307
Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., . . . Zhang, F. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science, 339(6121), 819-823. doi:10.1126/science.1231143
de Vries, L., Guevara-Rozo, S., Cho, M., Liu, L. Y., Renneckar, S., & Mansfield, S. D. (2021). Tailoring renewable materials via plant biotechnology. Biotechnol Biofuels, 14(1), 167. doi:10.1186/s13068-021-02010-z
Doudna, J. A., & Charpentier, E. (2014). Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science, 346(6213), 1258096. doi:10.1126/science.1258096
FAO. (2016) Summary Report of the FAO International Symposium “The Role of Agricultural Biotechnologies in Sustainable Food Systems and Nutrition. Roma: FAO.
FAO. (2018). The Future of Food and Agriculture. Recuperado de http://www.fao.org/3/I8429EN/i8429en.pdf
FAO. (2019). Agroecological and other innovative approaches for sustainable agriculture and food systems that enhance food security and nutrition. A report by the High Level Panel of Experts on Food Security and Nutrition of the Committee on World Food Security. . Recuperado de Rome, Italy.: https://www.fao.org/3/ca5602en/ca5602en.pdf
Fischer, J., B. Brosi, G.C. Daily, P.R. Ehrlich, R. Goldman, J. Goldstein, D.B. Lindenmayer, et al., (2008). Should agricultural policies encourage land sparing or wildlife-friendly farming? Frontiers in Ecology and the Environment 6 (7): 380–385. https://doi.org/10.1890/070019.
Giraldo F. O. & Rosset P. M. (2017). Agroecology as a territory in dispute: between institutionality and social movements, The Journal of Peasant Studies, DOI: 10.1080/03066150.2017.1353496
Gliessman, G (2014). The Ecology of Sustainable Food Systems. CRC Press. (3rd Edition ed.). ISBN. 9780429153709.
Gliessman, G. (2018). Defining agroecology. Agroecology and Sustainable Food Systems 42 (6): 599–600. https://doi.org/10.1080/21683565.2018.1432329
Gliessman, S.R. (2020). Transforming food and agriculture systems with agroecology. Agriculture and Human Values 37 (3): 547–548. https://doi.org/10.1007/s10460-020-10058-0.
González-Ortega, E., Fuentes Ponce, M. (2022). Dinámica del glifosato en el suelo y sus efectos en la microbiota. Revista internacional de contaminación ambiental, 38(54197). doi:10.20937/rica.54197
González-Ortega, E., Piñeyro-Nelson, A., Gómez-Hernández, E., Monterrubio-Vázquez, E., Arleo, M., Dávila-Velderrain, J., Martínez-Debat, C., Álvarez-Buylla, E. R. (2017). Pervasive presence of transgenes and glyphosate in maize-derived food in Mexico. Agroecology and Sustainable Food Systems, 41(9-10), 1146-1161. doi:10.1080/21683565.2017.1372841
GRAIN. (2021). Trade Agreements privitising biodiversity. https://grain.org/en/article/6701-trade-agreements-privatising-biodiversity.
Harvey, D. (2003). The “new” imperialism: accumulation by dispossession. Socialist Register, 40: 63–87.
He, Y., & Zhao, Y. (2020). Technological breakthroughs in generating transgene-free and genetically stable CRISPR-edited plants. aBIOTECH, 1(1), 88-96. doi:10.1007/s42994-019-00013-x
Heinemann, J. A., Paull, D. J., Walker, S., & Kurenbach, B. (2021). Differentiated impacts of human interventions on nature : Scaling the conversation on regulation of gene technologies . Elementa: Science of the Anthropocene, 9(1). doi:10.1525/elementa.2021.00086
Hilbeck, A., Binimelis, R., Defarge, N., Steinbrecher, R., Székács, A., Wickson, F., Wynne, B. (2015). No scientific consensus on GMO safety. Environ Sci. Eur. doi: 10.1186/s12302-014-0034-1
Hilbeck, A., & Tisselli, E. (2020). The emerging issue of “digitalization” in agriculture. In H. Herren, B. Haerlin and IAASTD+10 Advisory Group, Transformation of Our Food Systems: The Making of a Paradigm Shift. Berlin and Zurich: Foundation on Future Farming and Biovision.
Higgins, H. (2019). Creating a Sustainable Food Future: A Menu of Solutions. World Resources Institute. Recuperado de https://www.wri.org/insights/podcast-creating-sustainable-food-future.
HLPE (High Level Panel of Experts on Food Security and Nutrition). (2019). Agroecological approaches and other innovations for sustainable agriculture and food systems that enhance food security and nutrition|HLPE Report 14. Recuperado de: http://www.fao.org/3/ca5602en/ca5602en.pdf.
Holt-Giménez E & Altieri MA. (2013). Agroecology, food sovereignty and the new green revolution. Journal of Sustainable Agriculture 37 (1): 90–102. https://doi.org/10.1080/10440 046.2012.716388.
Ickowitz, A, Powell, B, Rowland, D, Jones, A and Sunderland, T. (2019). Agricultural intensification, dietary diversity, and markets in the global food security narrative. Global Food Security 20: 9–16. DOI: https://doi.org/10.1016/j.gfs.2018.11.002
IPES-Food. (2020). International Panel of Experts on Sustainable Food Systems. COVID-19 and the crisis in food systems: Symptoms, causes, and potential solutions. Recuperado de: https://www.ipesfood.org/_img/upload/files/COVID-19_CommuniqueEN%283%29.pdf
Isaac, Marney E., S. Ryan. Isakson, Bryan Dale, Charles Z. Levkoe, Sarah K. Hargreaves, V. Ernesto. Méndez, Hannah Wittman, Colleen Hammelman, Jennifer C. Langill, Adam R. Martin, Erin Nelson, Michael Ekers, Kira A. Borden, Stephanie Gagliardi, Serra Buchanan, Sarah Archibald, and Gálvez Ciani. Astrid. (2018). Agroecology in Canada: Towards an integration of agroecological practice, movement, and science. Sustainability 10: 1–17. https://doi.org/10.3390/su10093299.
Joga, M. R., Zotti, M. J., Smagghe, G., & Christiaens, O. (2016). RNAi Efficiency, Systemic Properties, and Novel Delivery Methods for Pest Insect Control: What We Know So Far. Frontiers in physiology, 7, 553. https://doi.org/10.3389/fphys.2016.00553
Jeong, S. H., Lee, H. J., & Lee, S. J. (2023). Recent Advances in CRISPR-Cas Technologies for Synthetic Biology. Journal of microbiology (Seoul, Korea), 61(1), 13–36. https://doi.org/10.1007/s12275-022-00005-5
Jiang, F., & Doudna, J. A. (2017). CRISPR-Cas9 Structures and Mechanisms. Annu Rev Biophys, 46, 505-529. doi:10.1146/annurev-biophys-062215-010822
Johnston, S F. 2018. The technological fix as social cure-all: Origins and implications. IEEE Technology and Society Magazine 37: 47–54. https:// doi.org/10.1109/MTS.2018.2795118.
Kawall, K., Cotter, J., & Then, C. (2020). Broadening the GMO risk assessment in the EU for genome editing technologies in agriculture. Environ. Sci. Europe. 32, 106. Doi: 10.1186/s12302-020-00361-2
Keulartz, J., & van den Belt, H. (2016). DIY-Bio–economic, epistemological and ethical implications and ambivalences. Life sciences, society and policy 12: 1-19. Doi: 10.1186/s40504-016-0039-1
Klein J. (1990). Interdisciplinarity: History, theory, and practice. Wayne State University Press.
Klerkx, Laurens, Emma Jakku, and Pierre Labarthe. (2019). A review of social science on digital agriculture, smart farming and agriculture 4.0: New contributions and a future research agenda. NJAS—Wageningen Journal of Life Sciences 90–91: 1–16. https://doi.org/10.1016/j.njas.2019.100315.
Klümper, W., & Qaim, M. (2014). A meta-analysis of the impacts of genetically modified crops. PLoS One, 9(11), e111629. doi:10.1371/journal.pone.0111629 Metje-Sprink, J., Sprink, T., & Hartung, F. (2020). Genome-edited plants in the field. Curr Opin Biotechnol, 61, 1-6. doi:10.1016/j.copbio.2019.08.007
Knott, G. J., & Doudna, J. A. (2018). CRISPR-Cas guides the future of genetic engineering. Science, 361(6405), 866-869. doi:10.1126/science.aat5011
Kremen, C., and A. Miles. 2012. Ecosystem services in biologically diversified versus conventional farming Systems: Benefits, externalities, and trade-Offs. Ecology and Society. https://doi.org/10.5751/ES- 05035-170440
Langner, T., Kamoun, S., & Belhaj, K. (2018). CRISPR Crops: Plant Genome Editing Toward Disease Resistance. Annu Rev Phytopathol, 56, 479-512. doi:10.1146/annurev-phyto-080417-050158
Levidow, L. (1998). Democratizing technology—or technologizing democracy? Regulating agricultural biotechnology in Europe. Technology in Society, 20, 211-226.
Levidow L., Pimbert M., & Vanloqueren G. (2014). Agroecological research: Conforming—Or transforming the dominant agro-food regime? Agroecology and Sustainable Food Systems 38 (10): 1127–1155. https://doi.org/10.1080/21683 565.2014.951459.
Martínez, S.F. (2022). Reduccionismo en biología: implicaciones para la relación ciencia-sociedad. En: “Diccionario de biología evolutiva para las ciencias sociales y las humanidades”, Jorge Galindo y Maximiliano Martínez (coords.). Ciudad de México, UAM-Unidad Cuajimalpa, División de Ciencias Sociales y Humanidades. p.494-502.
Méndez, V. E., Bacon, C. M., and Cohen, R. 2013. Agroecology as a transdisciplinary, participatory, and action-oriented approach. Agroecology and Sustainable Food Systems, Systems, 37(1): 3–18. https://doi.org/10.1080/10440046.2012.736926.
Modrzejewski, D., Hartung, F., Sprink, T., Krause, D., Kohl, C., & Wilhelm, R. (2018). What is the available evidence for the range of applications of genome-editing as a new tool for plant trait modification and the potential occurrence of associated off-target effects: a systematic map. Environmental Evidence, 7 (18). doi: 10.1186/s13750-018-0130-6
Mohanta, T. K., Bashir, T., Hashem, A., Abd Allah, E. F., & Bae, H. (2017). Genome Editing Tools in Plants. Genes (Basel), 8(12). doi:10.3390/genes8120399
Montenegro de Wit, M. (2020). Democratizing CRISPR? Stories, practices, and politics of science and governance on the agricultural gene editing frontier. Elementa: Science of the Anthropocene, 8(9). doi:10.1525/elementa.405
Montenegro de Wit, M. (2022). Can agroecology and CRISPR mix? The politics of complementarity and moving toward technology sovereignty. Agriculture and Human Values, 39, 733–755. doi:10.1007/s10460-021-10284-0
Napier, J. A., Haslam, R. P., Tsalavouta, M., & Sayanova, O. (2019). The challenges of delivering genetically modified crops with nutritional enhancement traits. Nature Plants. 5(6):563-567. doi: 10.1038/s41477-019-0430-z.
NAS. National Academies of Sciences, Engineering and Medicine. (2017). Preparing for Future Products of Biotechnology. Recuperado de: https://nap.nationalacademies.org/read/24605/chapter/1#ii. Washington, DC.: doi: 10.17226/24605
Pretty, J, Benton, TG, Bharucha, ZP, Dicks, LV, Flora, CB, Godfray, HCJ, Goulson, D, Hartley, S, Lampkin, N, Morris, C and Pierzynski, G. (2018). Global assessment of agricultural system redesign for sustainable intensification. Nat Sustain. 1(8): 441–446. DOI: https://doi.org/10.1038/s41893-018-0114-0
Razzaq, A., Saleem, F., Kanwal, M., Mustafa, G., Yousaf, S., Imran Arshad, H. M., . . . Joyia, F. A. (2019). Modern Trends in Plant Genome Editing: An Inclusive Review of the CRISPR/Cas9 Toolbox. Int J Mol Sci, 20(16). doi:10.3390/ijms20164045
Rosset, P.M.& Altieri M.A. (1997). Agroecology versus input substitution: a fundamental contradiction of sustainable agriculture. Society & Natural Resources 10, no. 3: 283–95.
Schenke, D., & Cai, D. (2020). Applications of CRISPR/Cas to Improve Crop Disease Resistance: Beyond Inactivation of Susceptibility Factors. iScience, 23(9), 101478. doi:10.1016/j.isci.2020.101478
Shew, A. M., Tack, J. B., Nalley, L. L., Chaminuka, P. (2020). Yield reduction under climate warming varies among wheat cultivars in South Africa. Nat Commun, 11(1), 4408. doi:10.1038/s41467-020-18317-8
Sprink, T., Eriksson, D., Schiemann, J., & Hartung, F. (2016). Regulatory hurdles for genome editing: process- vs. product-based approaches in different regulatory contexts. Plant Cell Rep, 35(7), 1493-1506. doi:10.1007/s00299-016-1990-2
Stone, G.D. & Glover D. (2017). Disembedding grain: Golden rice, the green revolution, and heirloom seeds in the Philippines. Agriculture and Human Values 34 (1): 87–102. https://doi. org/10.1007/s10460-016-9696-1.
Sullivan, S. (2023). Ag-tech, agroecology, and the politics of alternative farming futures: The challenges of bringing together diverse agricultural epistemologies. Agric Hum Values, 40, 913-928. doi:10.1007/s10460-023-10454-2
Ureta, C., González, E. J., Piñeyro-Nelson, A., Couturier, S., González-Ortega, E., & Álvarez-Buylla, E. R. (2023). A data mining approach gives insights of causes related to the ongoing transgene presence in Mexican native maize populations. Agroecology and Sustainable Food Systems, 47(2), 188-211. doi:10.1080/21683565.2022.2146252
Vanloqueren G. & Baret P.V. (2009). How agricultural research systems shape a technological regime that develops genetic engineering but locks out agroecological innovations. Research Policy 38 (6): 971–983. https://doi.org/10.1016/j.respol.2009.02.008
Willett, W., Rockström, J., Loken, B., Springmann, M., Lang, T., Vermeulen, S., Garnett, T., Tilman, D., DeClerck, F., Wood, A., Jonell, M., Clark, M., Gordon, L. J., Fanzo, J., Hawkes, C., Zurayk, R., Rivera, J. A., De Vries, W., Majele Sibanda, L., Afshin, A., … Murray, C. J. L. (2019). Food in the Anthropocene: the EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet (London, England), 393(10170), 447–492. https://doi.org/10.1016/S0140-6736(18)31788-4
Wittman, Hannah, Dana James, and Zia Mehrabi. (2020). Advancing food sovereignty through farmer-driven digital agroecology. International Journal of Agriculture and Natural Resources 47:235–248. https://doi.org/10.7764/ijanr.v47i3.2299.
Wolt, J. D. (2019). Current risk assessment approaches for environmental and food and feed safety assessment. Transgenic Res, 28(Suppl 2), 111-117. doi:10.1007/s11248-019-00140-7
Zhu, H., Li, C., & Gao, C. (2020). Applications of CRISPR-Cas in agriculture and plant biotechnology. Nat Rev Mol Cell Biol, 21(11), 661-677. doi:10.1038/s41580-020-00288-9